
Computers and Electronics in Agriculture

28 (2000) 29–49

Object-oriented simulation of integrated whole
farms: GPFARM framework

M.J. Shaffer *, P.N.S. Bartling, J.C. Ascough II
USDA-ARS, Great Plains Systems Research Unit, P.O. Box E, Fort Collins, CO 80522, USA

Received 1 November 1999; received in revised form 13 January 2000; accepted 15 February 2000

Abstract

Simulation frameworks for Decision Support Systems (DSSs) at the whole-farm level have
not adequately supported process level management and integration of complex farming
systems. Development of the Great Plains Framework for Agricultural Resource Manage-
ment (GPFARM) DSS for whole-farm management required a simulation package that
could handle this complex system. Object-oriented (OO) techniques now offer improved
opportunity for the development of suitable whole-farm simulations. A whole-farm simula-
tion framework was developed using Object-oriented programming (OOP) and executes
appropriate simulation modules, written in procedural languages (FORTRAN and BASIC),
for the lower-level processes. Abstraction, encapsulation, and hierarchy were crucial to
simplifying whole-farm complexity. OOP relationships, particularly inheritance in crops,
animals, and events were key in allowing dynamic (runtime) setup and simulation of the farm
system. Event objects were positioned outside of the simulation class and farm state to
provide event input format flexibility and allow the framework to check the system state
before events were implemented. The inclusion of existing or extended procedural modules
cut development time, helped insure maintenance support from cooperators, and assisted
with deployment of computationally efficient code. The resulting package simulates whole-
farm management involving interactive land units, integrated crop and livestock operations,
crop rotation systems and multiple commodities, and soil and climate variability. Simulation
of whole-farm scenarios provides information for DSS applications to display and compare
management alternatives. This research showed that an effective OO framework for inte-
grated farming systems should consist of a thorough object model of a farm state, a flexible
input and implementation of events, and a simulation environment to accomplish the
biological, chemical, and physical simulation of a farm.

www.elsevier.com/locate/compag

* Corresponding author. Fax: +1-970-4908310.
E-mail address: shaffer@gpsr.colostate.edu (M.J. Shaffer). Published by Elsevier Science B.V.

0168-1699/00/$ - see front matter Published by Elsevier Science B.V.

PII: S0168 -1699 (00 )00117 -4



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4930

Keywords: Whole-farm management; Soil-crop models; Ranching; Environmental quality; Decision
support systems

1. Introduction

A whole-farm Decision Support System (DSS) should provide the agricultural
manager with information about resources across the farm and potential impacts of
management decisions on those resources. To accomplish this, a DSS like the Great
Plains Framework for Agricultural Resource Management (GPFARM) must in-
clude many components to supply information to the user. The GPFARM DSS
components assisting users include: a Graphical User Interface (GUI) for input, a
scenario manager, economic and environmental simulation models, site database
generators, an information system, output visualization, and indices to compare
results (Shaffer and Brodahl, 1998; Ascough et al., 2000). In particular, GPFARM
must rely on a rigorous integration framework and process-based simulation
package that can handle the complexity of the system. Many complex issues must
be addressed before a viable whole-farm DSS can be designed or constructed. The
presence of multiple land units and uses; interactions across the farm/ranch;
production of multiple commodities; and variable soils, climate and management
activities are a few examples.

Traditionally, simulation of the soil–plant–atmosphere system involved reading
input for a site, implementing management events through time, and calling process
level science models. These models yielded single point data and were evaluated for
performance at a location (Khakural and Robert, 1993; Shaffer et al., 1994; Beckie
et al., 1995). More recently, models have been used in conjunction with geographic
information systems (GIS) and executed multiple times for points across a land-
scape to give spatial simulation results (Shaffer et al., 1995; Engel et al., 1997).
However, a dynamic spatial link generally has been absent, that is, having the
simulation at one location impact other locations at each time step. This link is
required for whole farm simulation because farm parts often share or transfer
resources affecting their simulation.

Whole farms consist of many components that may be sharing or competing for
resources. This complex array of components and their interactions is challenging
to program, especially using procedural languages such as FORTRAN and BASIC.
As a result, there is a lack of effective whole-farm simulation models. Rather, the
tendency has been to create convoluted code that is difficult to interpret and debug,
and cannot be easily extended or ported to related applications. Object-oriented
programming (OOP) methodology was developed with the intent of alleviating
some of these problems, but not without the introduction of a coincident, steep
learning curve for FORTRAN and BASIC programmers. However, the specific
benefits of OOP methods: data organization, code reuse, and code flexibility appear
promising especially with extremely complex systems such as whole-farms.



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 31

OOP methodology applied to simulation in agriculture is not new. For example,
OOP applications have been developed for specific parts of the system such as field
operations, nitrogen dynamics, and individual plant growth (Crosby, 1990; Se-
queira, 1990; Lal, 1991; Freeman, 1992). Object-oriented (OO) frameworks for
information delivery in DSSs have been implemented in conjunction with OO
databases and expert systems (Power, 1993; Van Evert and Campbell, 1994;
Gauthier and Neel, 1996). Whole farm modeling with the use of heuristic based
constraint satisfaction or linear programming approaches have also been docu-
mented previously (Buick, et al., 1992; Pannel, 1996; Schilizzi and Boulier, 1997).

A fully object-oriented simulation of a large agricultural system like a whole
production farm with multiple products and environmental impacts is lacking.
Silvert (1993) suggests the reason is that most process-level models are written in
procedural languages, and the code would need to be redesigned and rewritten
before it could be used directly in object-oriented modeling. This was a key issue in
the development of the GPFARM environmental simulation model. Contributing
scientists had considerable time invested in their respective science process modules
written in FORTRAN and BASIC. Therefore, an Object-oriented (OO) simulation
framework was developed that describes key farm system components and interac-
tions, and provides a medium for simulation. OO system analysis, design, and
programming were key in simplifying the complex farm, and increasing simulation
flexibility while making use of existing FORTRAN and BASIC code for lower-level
process simulation.

The OO approach in simulation allowed GPFARM DSS to meet its objectives of
providing the model user (agricultural producers and consultants) with information
for a whole-farm analysis based on interactions between cropping systems, animals,
weather, soils, and other management components in terms of bottom line econom-
ics and environmental impacts. The objective of this paper is to present the
development of an OO framework for simulation at the whole-farm/ranch level
with emphasis on the GPFARM Simulation Framework. The primary challenge
was the development of an OO structure for a whole-farm suitable for inclusion in
a DSS, and yet also compatible with process-level simulation.

2. The object-oriented farm simulation

An object-oriented analysis, design, and programming approach was used in the
GPFARM Simulation Framework. Object-oriented analysis (OOA) examines
‘What’ will be in the model and uses classes to describe objects defining the farm.
Object-oriented design (OOD) addresses ‘How’ the model will work focusing on
relationships and interactions on the farm. Object-oriented programming (OOP) is
the method of implementation (Booch, 1994). There are many ways to accomplish
OOA and OOD. The Object Modeling Technique (OMT), the Object Oriented
Software Engineering (OOSE) method, and the Booch Method are typical examples
(Rumbaugh et al., 1991; Jacobson et al., 1992; Booch, 1994). The Booch Method
was used for the GPFARM Simulation Framework; and simplified Booch Lite



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4932

notation is used for the object-oriented design figures in this paper (Booch, 1994).
The programming was implemented using C++. Four of seven elements explained
in the object model must be present to be OOP; they are abstraction, encapsulation,
modularity and hierarchy (Booch, 1994). These are accomplished by organizing
data and characterizing them by classes, hiding data, partitioning the program with
well defined boundaries, and establishing inheritance relationships, respectively.
Relationships among objects are a key concept in OOP. The framework makes
extensive use of the ‘Is a’ (generalization/specialization), ‘Has a’ (whole/part) and
‘Uses’ (association) relationships (Booch, 1994). The simulation framework and
DSS simulation objectives resonate throughout this approach. They are: to be
computationally efficient for fast execution, minimize input or hide complexity
from the user, maintain enough detail to simulate effects of changing management
on resources, and allow flexibility in the farming systems simulated.

A good abstraction can simplify the system complexity and emphasize details
that are significant to the user and suppress those details, for the moment, that are
diversionary (Shaw, 1984). As applied to an integrated farm (a place having
activities dealing with the cultivation of land and raising of animals) simulation,
abstractions must bring out key concepts important to the farmer and scientist. For
the farmer, the focus is on products and resources, namely the crop produced, the
herd of animals, or the land condition. The scientist focuses on accurate simulation
of those objects and adds others like climate, crop parameters, breed traits, and
pesticide parameters to name a few. The number of potential objects may be as
complex as the original problem. Specifically, abstraction, encapsulation, and
hierarchy are crucial to simplifying whole farm complexity. Modularity and the
dynamic (at run time) creation of objects greatly enhance the simulation’s flexibility
to handle a changing farm structure as well as changes in programming and
simulation technology.

The simulation framework objects can be classified into three categories for
discussion purposes, Fig. 1. The details of the categories and associated classes
characterizing framework simulation objects are presented in Table 1. The farm
state category includes objects describing the farm system that can be physical
(quasi-static places, meaning static at least in location) or dynamic (elements always
changing in type or location) in nature. The interactions category includes objects
describing events or interactions across the farm, and the simulation category
represents objects executing process level science modules. The GPFARM simula-
tion framework uses these objects to maintain the status of the farm system, create
and implement events, and iterate time and space while creating simulation
environments to execute and integrate FORTRAN and BASIC process level science
modules. The science modules are: nutrient cycling and residues (Shaffer et al.,
1991; Hansen et al., 1995), weed impacts on crop yield (Wiles et al., 1996; Canner
et al., 1998), water/solute transport and soil properties (Nachabe and Ahuja, 1996;
Ahuja et al., 1999), forage and animal production (Baker et al., 1992; Hanson et al.,
1992) crop growth (Williams et al., 1984; Arnold et al., 1995), evapotranspiration
(Farahani and Ahuja, 1996; Farahani and DeCoursey, 1999), and soil loss due to
erosion (Ascough et al., 1995, 1997).



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 33

2.1. The farm state category

In general, a farm state category includes all objects that hold the status of the
farm for the simulation. Objects are, by one definition, structures, locations, roles
played or events (Coad and Yourdon, 1991). The farm state has both physical
places (objects static in location) and dynamic players (objects not static in type or
location). The physical objects include the farm, subfarm, field, management unit,
and the various layers making up the environmental layer system. The dynamic
elements or players, which change in type or move across the farm, include crops
and animals (Fig. 1).

2.2. Farm state physical character

2.2.1. Farm
The farm place has many features associated with it. Some physical farm features

include fields and pastures, while others are man-made like storage silos and
corrals. Some require significant simulation be preformed on them. Others are
present to account for storage and use of resources on the farm. The role of a farm
in this framework is to hold information about all of its parts so they can be
simulated. Fig. 2 shows the Farm’s parts through the ‘Has a’ relationships.

Fig. 1. Components of an integrated whole farm.



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4934

Table 1
Classes of a whole farm simulation framework

Class name forNatureCategory Definition (maximum number of objects
as applied in GPFARM 1.0)object abstraction

Farm state The entire farm place to be simulated (1)Farm
(Physical place) Storage places for feed and manure (6)Quasi-static Bins

Corresponds to different climates (3)Subfarm
Climate Climate station data object (3)

Daily climate data objects (days * 50Climdat
years)
Management Unit Level smallest areaMu
simulated (60)

Subfarmid Subfarm location identification
Field location identificationFieldid

Canopylayer Respiring layer of the MU (1)
Surfacelayer The surface of the soil (1)

Pesticide apps. Residing the soil surfacePestiapp
(40)
Residue group residing on the soilsSurResidapp
surface, i.e. crops, manures, or other
organics (3)
Residue applications (80)Residapp
The soil profile (1)Soil
Soil layers consisting of depth to 7.5 cm,Soillayer
15 cm, 530cm, rooting and profile
depths (5)

Pesticide Pesticide apps. From surface left in soil
layer (40)
Part of residue from surface left in soilLresidapp
layer (3)

Residapp Portion of residue apps. in soil layer (80)
(Players) FarmDynamic

A domestic herd of animals, i.e. cow–calfDomHerd
herd (1)

Animals Contains average statistics for animals
(5)
The animal breed traits (1)Traits

Supavail The times when supplement is available
to animal (5)

Mu
A cultivated crop for grain or hay (1)Agricrop
Parameters for crop growth (1)Crpparam
A native rangeland (1)Foragecrop
Forage components including: cool andForageclass
warm season grasses, forbs, shrubs, and
legumes (5)

Interactions Events can be management orDynamic E6ent
interactions(unlimited)

(Farm level) Pendingevt Generic pending event(Events)
Initializes farm feed supplement binsFeedsupevt
Precipitation event adds nutrients foundPrecipevt
in rainfall



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 35

Table 1 (Continued)

Definition (maximum number of objects asClass name for objectCategory Nature
abstraction applied in GPFARM 1.0)

(Mu level) Plantevt Planting event for cultivated crops
Harvestevt Harvest event for cultivated crops

Tillage event for cropland unitTillageevt
Herbevt Herbicide application event for cropland

unit
Irrigevt Irrigation event for cultivated crops

Herd movement event on rangeland man-Grazestrtevt
agement unit

Grazeendevt Herd movement event off rangeland man-
agement unit

Nutricevt A chemical nutrient application
Nutrimevt A manure nutrient application

Framework simulation class which callsSuSimulation Simulation unit
FORTRAN libraries and initiates BASIC
applications

2.2.2. Subfarm
The farm can physically be widely distributed, having parts of the farm in

different climate regions. For example, a farmer may want to use the GPFARM
DSS to look at whole farm economics, environmental impacts, and production
across mountain grazing areas as well as crop production on the plains. The
subfarm concept was designed to address simulating areas with different climates.
A subfarm identification is attached to the land unit to load the appropriate daily
climate for simulation of that unit. In GPFARM 1.0, the framework is designed to
handle up to three subfarms. Each subfarm reference identifies a position in a
dynamic template array of climates. Each climate template holds climate station
data as daily climate for the simulation.

2.2.3. Field
Farmers generally define their land units as fields or pastures. Roads, fences or

natural features like streams usually delineate these land areas, and management
within can be constant or variable. The field is a key concept for the manager to
locate land units on the farm and identify their land use. However, this is an
extremely variable environment where soil conditions, weed pressures, and land-
scape characteristics impact simulation outcomes significantly even with a given
land use. Smaller delineated land units (management units) are necessary to hold
information specific enough to simulate variability across the field. However,
maintaining the field as a location tag in the farm state category of the framework
is crucial to the presentation and aggregation of simulation results for the user.
Therefore, management unit (Mu) ‘Has’ a FIELDID (Fig. 2).



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4936

Fig. 2. Object-oriented design of GPFARM 1.0 simulation framework.

2.2.4. Management unit
The management unit (Mu) is a key physical land area to delineate for simula-

tion. Mu delineation for the purposes of simulation varies with the user’s applica-
tion and needs. For example, for a farmer in precision agriculture or a soil scientist,
a Mu may be a land area where one management scheme dominates on a given soil.
For a ranching application, the management scheme, rather than soil normally
drive a Mu delineation. Implementation of a grazing rotation is dependent on
physical barriers to manage the location of animals. The hydrologist may delineate
a Mu by the shape of the landscape where slope defines flows over a larger area.
The Mu in the GPFARM simulation framework is designed to hold data ranging
from the general to the more specific land delineations.

The Mu’s role in the farm state is to contain all the biological, physical, and
chemical data necessary for the environment to be simulated. It provides functions
to process user input data for simulation. The Mu class makes objects of its parts,
establishes relationships among other objects, loads initial condition information



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 37

into its parts, and contains special functions for the soil system. These functions
include depth weighting incoming soil layer data to a simulation soil-layer system,
and calculating the status of the soil water.

The Mu is the smallest unit to be simulated and results can be output to the user
or transferred during runtime (dynamically) to another Mu as input. For example,
interactions among Mu’s in water runoff and runon can be handled with interface
input on Mu flow dependencies and an event implementation defined for when
runoff occurs on a Mu. The event implementation defined by user or the frame-
work would dictate the timing of runoff as run-on to another unit.

The framework simulates each Mu daily and writes output from it. The frame-
work relies on other applications for output aggregation. In GPFARM 1.0,
separate post-processing applications such as the GPFARM Visualization or
GPFARM economics package aggregate and process Mu biological, chemical and
physical output in a manner and at the level the user wishes to see.

2.2.5. Mu and en6ironmental layer system
Fig. 1 shows a schematic representation of an integrated farm where parts

depicted assist in abstracting the Mu class. OO Design phases demonstrated that a
Mu has area extent, location, environmental layers, and ‘use’ associations with
crops and animals (Fig. 2). Further abstraction of the environmental layers for
GPFARM 1.0, resulted in a Mu having one canopy layer, one surface layer, one
soil profile, and up to five soil layers (Fig. 3). Table 1 shows the Mu class structure
(indentations representing ‘has parts’ relationships with other class objects).

The Canopylayer object holds state variable information with regards to canopy
dynamics. These include wind speed in the canopy, light interception, canopy
humidity, and arial and basal covers. The object holds potential and actual
evaporation and transpiration for the grain or forage crop. Many of the plant
attributes residing in this layer such as height, leaf area index, and cover and are
assigned to a crop base class discussed in the dynamic (changing in type or
location) aspect farm-state objects.

The Surfacelayer object contains all data characterizing the soil surface, such as
residues and pesticides present, topography, roughness, reflectance, infiltration
attributes, erosivity, and functions to aggregate some of its parts. These compo-
nents are crucial to the soil nutrient budget and are affected by management
decisions regarding tillage. In addition, the presence of residues and pesticides are
tracked for each application through time. This seemingly complex accounting
system is simplified into a few ‘Has a’ relationships with classes which can be
utilized in the system above and below ground. For example, the Surfacelayer ‘has’
three types of SurResidapp which ‘has’ many Residapp objects (Table 1).

The soil profile object (ASoil) contains the condition of the soil profile. Input
information for the soil series resource is stored here, such as layer restrictions,
series name and texture, wet and dry albedo, and depth to water table and hard
pan. A soil profile schematic has soil layers as its parts (Fig. 1). However, a model
developer must judge whether further nesting of parts will add functionality or
encumber it. For the GPFARM 1.0 simulation framework application where ten



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4938

FORTRAN/BASIC coded science modules would be loading data to and from the
physical Mu object, another parts hierarchy provided more encumbrances than
functionality; therefore, the Mu object has a soil and soillayer objects directly
instead of nested (Fig. 3). In addition, the Mu class has a Nbudget object that is
used to maintain variables calculating nutrient and water mass balance in the
profile. It also holds additions of various forms of nutrients to the Mu from the
implemented daily events for simulation.

Soil layers represented by the Soillayer class have variables describing both
physical and chemical layer attributes. These include bulk density, pH, soil organic
matter, nitrate nitrogen, ammonium nitrogen, water content, and root mass to
name a few. As with a Surfacelayer object, each soil layer would contain any
residue or pesticide objects that infiltrated into the soil from the surface applica-
tions through time (Table 1). Soil profile attributes likely to impact a manager’s
plan, such as root zone water and residual nitrates, are derived from these layer
objects.

Fig. 3. Object-oriented design of Mu’s environmental layers (canopylayer, surfacelayer, soil profile and
soil layers).



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 39

2.3. Farm state dynamic character

Dynamic character refers to the environmental players whose presence or nature
changes with time on the farm. While the farm physical character holds data about
places static in location, the farm dynamic character holds data about the changing
and moving players on the farm.

2.3.1. En6ironmental players
Animal types and crop types are key examples of environmental players. Animals

move across the farm and crop types are transitory, changing with each year in a
crop rotation. These players are present and interact at different levels of the
physical farm (Fig. 1). Farm physical places have associations or ‘use’ relationships
with these players (Fig. 2). For example, a Mu object can use information stored
with the farm level animal herd. Mu herds can be all or part of the farm herd and
the herds can be domesticated or wild. The farm state base structure must be
flexible enough to handle new players in the system, as new science modules become
available to simulate them.

The animal kingdom is a complex aspect of the farm players needing simplifica-
tion. There are both wild and domesticated animals that are either confined or free
ranging; all impact the environment, use resources, and may produce revenues. A
generalized base class, Herd has animal type and herd size as its variables and
provides a good foundation class on which to derive herds for simulation. A
specialized domestic herd (DomHerd) is a Herd (Fig. 2). In GPFARM 1.0, a
cow–calf herd is the domestic herd on the farm but other herds could be derived
if the application warranted it. The domestic herd has many parts including breed
traits, animals, and several kinds of supplement available to it (Table 1). The farm
object’s role is to read the user provided information and if an animal herd is
present, a Domherd is allocated in memory at runtime and passed arguments on
herd type and animal size for the base class data requirements.

Farm players can also be abstracted from land use. The GPFARM crop players,
Agricrop and Foragecrop, are created in the management unit object construction
by reading a management unit land use which is either cropland or rangeland
(Table 1). Classifying similarities into generalized objects and differences into
specialized objects (‘is a’ relationship) accomplishes the framework’s objectives in
simplifying complexity with animals and plants, but also increases their simulation
flexibility (Fig. 2). Framework simulation flexibility increases by allowing dynamic
(runtime) execution of process simulation models depending on the specialized
object present. For example, a base class crop provides the crop variables needed by
the potential evapotranspiration and the water balance and chemical transport
models. These variables include plant height, totals for live and dead leaf area
index, canopy cover, and water and nitrogen stress. These same models run
regardless of the specialization of the crop. However, when a specialized player is
present, the appropriate plant growth model is called in the simulation environment
(Simunit). If a Foragecrop object is present, the rangeland forage model will be
called; and, if an Agricrop object is present, the crop growth model will be called.



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4940

In the same manner, if a Domherd object exists the animal growth, intake, and
population models will be called.

2.4. Interactions — the e6ent system

The simulation framework creates and implements event objects for management
operations and interactions across the farm. The framework has access to the event
and the condition of the farm and its parts before the event is implemented. It calls
the event implementation function or delays it until the state is favorable. This
concept gives users the flexibility of fixed date or rule-based management operations
as a means to input events. The GPFARM 1.0 simulation framework handles farm
events such as the marketing of animals and the maintenance of feed bins. It also
creates and implements management operation objects for the Mu such as, plant-
ing, harvesting, tillage, weed control, and nutrient application events for cropland
units. For rangeland management units, it allows herd on and off events. These
events are all derived and inherit information from the base class Event using the
‘is a’, inheritance relationship (Fig. 2). In general, the Event object has a place
(usually a Mu identification or Muid) and type of event (usually a four letter code).
The date is conspicuously absent from the event base class. This is because
rule-based events may be derived from this class and have no need of a date. In
addition, fixed date events are read every day for implementation so that date
storage is not necessary. The main concern of this approach was the time require-
ments for the interface to write an event file for 20 years and the framework to read
it daily. However, three important elements in the simulation framework’s develop-
ment picture eased that concern. First, advancements in database system query
language (SQL) and database class development like Open Data Base Connectivity
(ODBC) or Data Access Object (DAO) have made it almost effortless to read a
table, maintain position, and manipulate records. Secondly, reserving program
memory to handle more simulation objects for the whole farm rather than storing
event history is certainly desirable. Finally, once a rule-based management input
system is attached and operational, writing input events for 20 years will soon be
obsolete.

The framework can also link a rule-based management system developed concur-
rently with GPFARM (Shaffer and Brodahl, 1998). A Beta version of GPFARM
ran with this rule-based management system applied as the only means of generat-
ing management operations for the simulation. Work is currently underway to fully
implement this system to run concurrent with a fixed date system allowing the next
GPFARM simulation framework application more mixed event input capabilities.
The user could fix dates for certain events, but allow irrigation by a rule rather than
the current system of fixed date or at a scheduled interval. An application interface
object allows the rule script, generated from user interface input, runtime access to
appropriate GPFARM state variables and transfers the action to be taken back to
the simulation program as an event. For example, an irrigation application includes
querying rules for the Mu and checking the water depletion status. If water
depletion is below a user defined level, the application’s interface object will be give



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 41

an appropriate irrigation event (AnIrrigevt) back to the framework for the Mu and
day. The same event format can be used by the fixed date system only it is initiated
from an event table record written by the GPFARM DSS graphical user interface
(GUI).

2.5. Simulation — the simulation en6ironment

The simulation environment or Simunit class is a key abstraction for the scientist
and programmer to execute process level models. Process level models execute using
daily climate, date and the Mu place, however not all models execute on every Mu
or every day. For GPFARM 1.0 the overall suite of models include: potential
evapotranspiration, water balance and chemical transport, soil properties, nutrients
and residues, agricultural crop growth, forage crop growth, soil erosion, weed
competition, herd dynamics, and animal growth and intake.

These models could have been part of the farm layer system with the canopy
layer able to call the potential evapotranspiration model. However, many scientists
were contributing these models to GPFARM in different languages and
programming styles. Isolating them to their own object seemed prudent. Often
when existing programs are put within other applications they are put in a wrapper.
Isolating submodels in their own object increases programming flexibility to replace
components, as better options become available.

2.6. Implementation of the integrated farm simulation framework

The simulation framework is a C++ executable called from a dialog box in the
GPFARM Graphical User Interface (GUI). The simulation framework makes the
farm place and dynamically allocates the climate template array. For each day and
place, it reads events or queries a rule system (resulting in events), and implements
events in the Mu place. All interactions between Mus are considered as events and
are implemented daily before the Mu is sent to simulation. The framework
performs the simulation by making the simulation environment, ASu (Fig. 4, part
D). It also reports the status of the farm at crucial management times throughout
the simulation.

2.6.1. Creation of the farm system
The creation of the GPFARM whole farm place is accomplished in one state-

ment, ‘Farm AFarm’; (Fig. 4, Part A). The physical place and the dynamic players
of the farm are built by creating objects, data and function hiding, expressing
relationships including ‘has a’ and ‘uses’ and establishing a hierarchy through
inheritance with the ‘is a’ relationship. All essential aspects of object-oriented
programming which when implemented in the agricultural system state takes the
complex and makes it simple.



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4942

Fig. 4. C++ code implementation of the GPFARM simulation framework.

2.6.2. Time iteration
Program–Date objects are made for the starting, ending, and simulation dates of

the run (Fig. 4, Part A). These objects inherit standard Date accounting from the
base class Date but also provide functions for testing end-of-month and end-of-year
useful in output reporting. It is incremented daily in a While loop as long as
Simdate is less than or equal to Stopdate (Fig. 4, Part B).



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 43

2.6.3. Space iteration
Daily iteration of space is implemented in a For loop for all Mu’s on the farm

(Fig. 4, Part B). This aspect was debated as to whether the load and save on each
Mu each day would slow the simulation too much. The overwhelming advantage
was the possible interaction among Mus on a daily basis. This meant transfer of
water, nutrients, residues and other resources or products from one Mu to the next
over a field or a farm was possible during runtime (dynamically). For example, Mu
runoff and erosion output could be routed, given some Mu routing scheme from
the user, thus creating a watershed simulation environment. With the current
number (60) of allowable Mus in the program, such iteration affords more land
unit interaction advantages than limitations.

2.6.4. Implementation of the e6ents
For each Mu all fixed date events are read and implemented. A fixed date event

is read from presorted Microsoft Access tables first into a pending event where type
of event is read. Based on the type of event, the event object is filled and
implemented before the Mu is passed to the simulation unit (Fig. 4, Part C).

2.6.5. Creation of the simulation unit
The simulation of the Mu occurs when a simulation object (ASu) is made (Fig.

4, Part D). The Simunit object is passed farm resources like cattle herds and
supplement bins, a Mu, and a daily climate in its construction. Having all required
agricultural system state information to process, the FORTRAN variable
connections are established, and nine FORTRAN models and one BASIC science
model are called depending on the dynamic players present. All newly simulated
information is saved back to the agricultural system place.

2.6.6. Reporting on the farm
Reporting the status of the farm can be initiated when the simulation reaches

predefined crucial dates; for example, the last day of the year for annual output
(Fig. 4, Part D). Often it is initiated by an event (i.e. plant, harvest) and can be
included with the event implementation or split into its own function and called
after the event implementation. As an example, the soil profile status of each Mu
is written on the planting date (Fig. 4, Part C).

2.7. GPFARM connection between interface and simulation framework

The connection between the GPFARM GUI and the science framework utilizes
Microsoft Access databases to pass information. Fig. 5 illustrates the connection.
The user enters the required input information (e.g. equipment, investments, Mu
landuse and area, Mu resources and management operations, and climate) in the
GUI. The simulation framework may then be run by selecting a ‘Run Simulation’
dialog box in the GUI (Fig. 5, Block 1). At this time, the scenario(s) to be run and
the time range for the simulation are also specified. A scenario is a farm setup with
a given management plan and resources. A farmer can set up multiple scenarios
with the DSS and simulate management plans before implementing them.



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4944

All input tables, necessary to run the GPFARM science model, are contained in
the scenario Microsoft Access database USERDB. The GUI fills the USERDB
tables as the next step (Fig. 5, Block 2). The major tables filled contain information
on farm name and location; farm equipment and investments; Mu area and
landuse; Mu soils, topography, residue, and initial weed population; and Mu
cropping systems and management operations. Other tables are filled depending on
additional options chosen within the GUI. For example, if weed management is
chosen, tables containing information on weed pressure, pesticide efficacies, and
pesticide properties (e.g. half-life) are filled. If rangeland is chosen for any of the
Mu’s, then tables containing information on herd description, forage and supple-
mental feed properties, and herd physical characteristics are filled. If the Mu is to
be irrigated, then tables containing information on the irrigation system(s) are also
populated.

The GPFARM science framework simulation is then executed (Fig. 5, Block 3)
after USERDB has been filled. The CLIMDB (climate) input tables (Fig. 5, Block
6) and the USERDB input tables are used as input to the GPFARM simulation
framework application. The OUTPUTDB (output) tables (Fig. 5, Block 7) are filled
as the simulation is run. The major tables filled contain information on water
runoff, nitrate leaching, wind and water erosion, and crop yield. If weed manage-
ment is chosen, then tables containing information on yield loss due to weed
pressure, and pesticide runoff and leaching are filled. If rangeland is chosen for any
of the Mu’s, then tables containing information on animal average daily gain, sales,
forage and supplement consumption and peak forage biomass are filled.

After the science simulation framework is run, the economic simulation is
performed (Fig. 5, Block 4). The economic simulation consists of two phases. First,
required economic information is obtained from the equipment and investments
database tables. Operating cost calculations are then conducted for equipment and
investments on a per-hour basis. Second, the management operations for each Mu
are examined one-by-one and per-hour operating cost calculations applied wherever
applicable. In cases where there are also material costs (e.g. seed cost), the material

Fig. 5. Overview of GPFARM connection between GUI and simulation framework.



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 45

costs are directly combined with the operating costs. Crop yield and market price
information are then used to calculate returns. Once all Mu economic calculations
are performed, information on ownership costs, operating costs, returns on operat-
ing costs, and returns over total costs are placed into economic output database
tables. These tables, along with some USERDB input tables, are used for the
creation of detailed economic reports.

The visualization setup (Fig. 5, Block 5) uses the information gathered in the
USERDB and OUTPUTDB tables to create a set of ASCII files that are used for
quick access by the visualization output tool. The user may then select variables to
be displayed in the visualization output tool at the level of farm aggregation they
wish to see (Fig. 5, Block 8). Results from multiple management scenarios (simula-
tions) may be compared with this tool.

3. Discussion and conclusions

In general, an effective OO framework for integrated farming systems should
consist of a thorough object model of a farm state, a flexible input and implemen-
tation of events, a simulation environment to accomplish the process level simula-
tion of the biological, chemical, and physical components of a farm, and iteration
of time and space to allow interactions among spatial units and resources on the
farm. The benefits realized from an OOP approach in whole farm simulation
include simplifying system complexity and increasing flexibility of the simulation
application. The object model together with OOP relationships, that is-whole/part,
generalization/ specialization (inheritance), works to achieve these benefits. In
addition, the OOP approach makes addition and reconfiguration of Mus and their
interactions a much simpler and compact process than would be needed using other
programming approaches. This allows potential users, such as farmers and consul-
tants, to utilize the model as a close approximation of their farming or ranching
operations. They may then draw conclusions from the simulation results and from
economic and environmental analyses to help refine or define operations that
maximize profits, yet protect the environment.

The magnitude of benefits from OOP however is dependent on its judicious use
(Power, 1993). Whether an organism traverses the farm as an animal herd or resides
at a location like a plant, the organism itself is as complex as the environment in
which it exists. Simplifying this complex system starts with finding similarities,
differences and subparts and bringing them out in the design. One of the most
difficult design judgements to make is whether the organisms’ attributes are
different enough to abstract them to a new derived class. Certainly, process level
models and their capabilities influence design abstractions. For example, one
simulation model for forage production and one for annual crops calls for at least
two objects. However, developers should avoid letting simulation capabilities drive
the framework design, as new models will always present themselves requiring
changes in the design. As an example, the GPFARM simulation framework
definition of a domestic herd class is biased toward animal operations producing



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4946

meat and not broad enough to cover domestic animals kept for other products. A
good framework modification to simulate goats would be to make the domestic
herd class (DomHerd) more generic and derive GoatDomHerd and Cattle-
DomHerd from it.

Flexibility in simulation indicates a framework is responsive to change. These
changes can be in the areas of farm structure and resources, input/output formats,
farm management events, or simulation modeling techniques. The OO framework
directly addresses changes in farm structure and resources through the dynamic
(runtime) allocation of objects on the farm. The positioning of event objects outside
the simulation class or farm object provides input/output format flexibility for
events as well as allowing the framework to check farm state before events are
implemented. Therefore, the framework can implement events in a practical manner
similar to the methods of a farm manager in the field. The capability of a
framework to handle fixed date and rule-based events will bring management event
simulation closer to emulating the farmers own decisions. How close could only be
answered by the attached rule system and its capabilities to handle complex rules
entered by the farmer.

Previously, the importance of using inheritance and its advantages in reuse of
code was explored (Silvert, 1993; Power, 1993). These previous findings proved
valid in the GPFARM 1.0 simulation framework flexibility. The inheritance rela-
tionships in crops, animals and events were key in allowing dynamic (runtime)
setup and simulation of the farm system. The subdivision of crops into agricultural
and forage was particularly useful in executing their different simulation models.

Unfortunately, first-time designs are often skewed by the current simulation
capabilities of the submodels. For example, GPFARM 1.0 science modules could
not handle herds grazing actively growing crops like winter wheat. Fortunately,
OOP approaches provide tools to handle this; such as, inheritance (to extend the
current Agricrop to a grazed derived class) or polymorphism (to define a graze
function to mean a separate implementation for each derived crop class). The
framework will likely be expanded using these OOP tools as the need arises.

It has been also suggested that ‘frameworks provide the easiest and most
productive bases for effective reuse of existing software’ (Gauthier and Neel, 1996).
This framework did provide a good base for the effective use of pre-existing process
level models; and, the decision to allow incorporation of procedural based FOR-
TRAN and BASIC process simulation modules has proven beneficial in several
ways. The scientists who developed these modules continue to support and extend
their code used in GPFARM. The use of the minimal wrapper concept to execute
these modules in the C++ object-oriented environment has allowed a more rapid
turn around time when maintenance and updating are needed. However, the
existing wrappers could be enhanced to make module additions and replacements
even more streamlined. The addition of new simulation capabilities is made easier
by the availability of a large array of FORTRAN and BASIC soil-plant process
modules compared to object-oriented C++ equivalents. Although the contents of
each FORTRAN or BASIC module are procedural, each module can be treated as
an individual object or related modules can be grouped and treated as an object by



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 47

the framework. Judicious grouping of process simulation modules can improve run
times for the overall simulation. Also, in many cases, the FORTRAN versions of
algorithms used to solve sets of equations are more efficient than their C++
equivalents.

4. Availability

The GPFARM simulation framework application 1.0 is currently operational
within the GPFARM decision support system 1.0 in limited release to collaborating
Colorado farmers and agricultural consultants. Although evaluation and validation
tests are on-going, the integrated whole-farm simulation, the DSS, and its features
have already proven useful in assisting managers with strategic farm planning.
Additional information is available on the USDA-ARS, Great Plains Systems
Research Unit, Internet Web site at URL: http://www.gpsr.colostate.edu.

Acknowledgements

Many thanks to Mary Brodahl for collaborating discussions on object-oriented
event design, rule based event systems, and her authorship of the Date class and
derived classes. A special thanks to the GPFARM Team, especially Decision
Support System programmers, Debbie Edmunds and Bruce Vandenberg, whose
collaboration contributed to the framework’s successful application in GPFARM
1.0. Thanks to Charlie Bay for the instruction in OOA, OOD and OOP resulting in
a successful application.

References

Ahuja, L.R., Johnsen, K.E., Rojas, K.W., 1999. Water and chemical transport in soil matrix and
macropores, ch. 2. In: Ahuja, et al. (Eds.), Root Zone Water Quality Model: Modelling Management
Effects on Water Quality and Crop Production, Water Resources Publications, LLC, Highlands
Ranch, Colorado, pp. 13–50 (in press).

Arnold, J.G., Weltz, M.A., Alberts, E.E., Flanagan, D.C., 1995. Plant growth component (ch. 8). In:
Flanagan, D.C., Nearing, M.A. II (Eds.), USDA-Water Erosion Prediction Project: Hillslope Profile
and Watershed Model Technical Documentation. NSERL Report No. 101-8.41. USDA-ARS
National Soil Erosion Research Laboratory, West Lafayette, IN, pp. 8.1–8.41.

Ascough, J.C. II, Baffaut, C., Nearing, M.A., Liu, B.Y., 1997. The WEPP watershed model: I.
Hydrology and erosion. Trans. ASAE 40 (4), 921–933.

Ascough, J.C. II, Baffaut, C., Nearing, M.A., Flanagan, D.C., 1995. Watershed model channel
hydrology and erosion processes (ch. 13). In: Flanagan, D.C., Nearing, M.A. (Eds.), USDA-Water
Erosion Prediction Project: Hillslope Profile and Watershed Model Technical Documentation.
NSERL Report No. 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette,
IN, pp. 13.1–13.20.

Ascough II, J.C., Shaffer, M.J., Hoag, D.L., McMaster, G.S., Ahuja, L.R., 2000. GPFARM: An
integrated decisions support systems for sustainable Great Plains Agriculture. Proceedings of the 10th

International Soil Conservation Organization Conference (ISCO): Sustaining the Global Farm —



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–4948

Local Action for Land Leadership, Purdue University, West Lafayette, IN, May 23–28, 1999 (in
press).

Baker, B.B, Bourdon, R.M., Hanson, J.D., 1992. FORAGE: a simulation model of grazing behavior in
beef cattle. Ecol. Model. 60, 257–279.

Beckie, H.J., Moullin, A.P., Campbell, C.A., Brandt, S.A., 1995. Testing effectiveness of four simulation
models for estimating nitrates and water in two soils. Can. J. Soil Sci. 75, 135–143.

Buick, R.D., Stone, N.D., Scheckler, R.K., Roach, J.W., 1992. CROPS: a whole-farm crop rotation
planning system to implement sustainable agriculture. AI Applic. 6 (3), 29–50.

Booch, G., 1994. The object model (ch. 2). In: Object-Oriented Analysis and Design with Applications,
2nd edn. Benjamin/Cummins Publishing Co., Inc, Redwood City, CA.

Canner, S.R., Wiles, L.J., Dunan, C.R., Erskine, R.H., 1998. A new approach for modeling long term
multi-species weed population dynamics. Proc. Western Weed Sci. Soc. 51, 30.

Coad, P., Yourdon, E., 1991. Object-Oriented Analysis. Prentice-Hall, Englewood Cliffs, NJ, p. 232.
Crosby, C.J., 1990. A simulation modeling tool for nitrogen dynamics using object-oriented program-

ming. AI Applic. Nat. Res. Manage. 4 (2), 94–100.
Engel, T., Hoogenboom, G., Jones, J.W., Wilkens, P.W., 1997. AEGIS/WIN: a computer program for

the application of crop simulation models across geographic areas. Agron. J. 89 (6), 919–928.
Farahani, H.J., Ahuja, L.R., 1996. Evapotranspiration modeling of partial canopy/residue covered

fields. Trans. ASAE 39 (6), 2051–2064.
Farahani, H.J., DeCoursey, D.G., 1999. Potential evaporation and transpiration processes in the

soil-residue-canopy system, ch. 3. In: Ahuja, et al. (Eds.), Root Zone Water Quality Model:
Modelling Management Effects on Water Quality and Crop Production, Water Resources Publica-
tions, LLC, Highlands Ranch, Colorado, pp. 51–80 (in press).

Freeman, S.A., 1992. Object-oriented methodology for analyzing and allocating resources for field
operations. Appl. Eng. Agric. 8 (4), 525–535.

Gauthier, L., Neel, T., 1996. SAGE: an object-oriented framework for the construction of farm decision
support systems. Comput. Electron. Agric. 16 (1), 1–20.

Hansen, S., Shaffer, M.J., Jensen, H.E., 1995. Developments in modelling nitrogen transformations in
soil, ch. 3. In: Nitrogen Fertilization and the Environment. Dekker, New York, pp. 83–107.

Hanson, J.D., Baker, B.B., Bourdon, R.M. 1992. SPUR2 Documentation and User Guide. GPSR
Technical Report No. 1. 46 pp.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G., 1992. Object-Oriented Software Engineering:
A Use Case Driven Approach. Addison-Wesley, Reading, MA.

Khakural, B.R., Robert, P.C., 1993. Soil nitrate leaching potential indices: using a simulation model as
a screening system. J. Environ. Qual. 22, 839–845.

Lal, H., 1991. An object-oriented field operations simulator in PROLOG. Trans. ASAE 34 (3),
1031–1039.

Nachabe, M.H., Ahuja, L.R., 1996. Quasi-analytical solution for predicting the redistribution of
surface-applied chemicals. Trans. ASAE 39, 1659–1664.

Pannel, D.J., 1996. Lessons from a decade of whole-farm modelling in Western Australia. Rev. Agric.
Econ. 18 (3), 373–383.

Power, J.M., 1993. Object-oriented design of decision support systems in natural resource management.
Comput. Electron. Agric. 8 (4), 301–324.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., 1991. Object-oriented modeling and
design. Prentice-Hall, Englewood Cliffs, NJ.

Schilizzi, G.M., Boulier, F., 1997. Agric. Syst. 54 (4), 477–499.
Sequeira, R.A., Makela, M.E., El-Zik, K.M., Stone, N.D. 1990. Coughing object-oriented plant and

Heliothis models. Proceedings—Beltwide cotton Production Research Conferences, 339–342.
Shaffer, M.J., Brodahl, M.K., 1998. Rule-based management for simulation in agricultural decision

support systems. Comput. Electron. Agric. 21, 135–152.
Shaffer, M.J, Halvorson, A.D., Pierce, F.J., 1991. Nitrate leaching and economic analysis package

(NLEAP): model description and application (ch. 13). In: Follett, R.F., Keeney, D.R., Cruse, R.M.
(Eds.), Managing Nitrogen for Groundwater Quality and Farm Profitability. Soil Science Society of
America, Madison, WI, pp. 285–322..



M.J. Shaffer et al. / Computers and Electronics in Agriculture 28 (2000) 29–49 49

Shaffer, M.J., Wylie, B.K., Follett, R.F., Bartling, P.N.S., 1994. Using climate/weather data with the
NLEAP model to manage soil nitrogen. Agric. Forest Meteor. 69, 111–123.

Shaffer, M.J., Wylie, B.K., Hall, M.D., 1995. Identification and mitigation of nitrate leaching hot spots
using NLEAP-GIS technology. J. Contaminant Hydrol. 20 (1995), 253–263.

Shaw, M., 1984. Abstraction techniques in modern programming languages. IEEE Software 1 (4), 10.
Silvert, W., 1993. Object-oriented ecosystem modelling. Ecol. Model. 68 (1993), 91–118.
Van Evert, F.K., Campbell, G.S., 1994. CropSyst: a collection of object oriented simulation models of

agricultural systems. Agron. J. 86 (2), 325–331.
Williams, J.R., Jones, C.A., Dyke, P.T., 1984. A modeling approach to determining the relationship

between erosion and soil productivity. Trans. ASAE 27, 129–144.
Wiles, L.J., King, R.P., Schweizer, E.E., Lybecker, D.W., Swinton, S.M., 1996. GWM: Gen. Weed

Manage. Model. 50, 355–376.

.


